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1 Motivation for the Research

It is widely recognized that the cost of software is far outstripping that of hardware,
and that software repair, improvement, and enhancement typically consume the major
portion of the cost. This is true even in light of recent advances in languages and
tools, which are more than offset by the increasing size and complexity of software
systems.

There are severai reasons for the high cost of modifications. One is that system
requirements may be wrong or imprecise. Research on rapid prototyping is expected
to help in this regard. Another reason is that a system implementation may not meet
its requirements. Approaches to this problem include testing, formal verificatior. and
runtime assertion checking.

However, the dominant source of cost is system modification, which is necessitated
by changes in requirements and in the support environment. If the design or the
implementation ~f a large system is changed, the incremental cost of an individual
change can be unacceptably high because a seemingly minor change to one part of a
system can have unforeseen and subtle consequences in another part.

Some changes always will have far-reaching effects. The root cause is the imple-
mentation goal of good performance which usually dominates and conflicts with the
goals of maintaining clarity and structure. In this research, we have devised formal
techniques that can substantially reduce the cost of modifying large systems, espe-
cially those systems that have been optimized for performance. The techniques have
been implemented and apply to a large class of sequential systems containing such
objects as modules, procedures, and variables.

The ways in which objects can be related is limited at present, reducing design and
implementation flexibility. We believe that our results can be generalized to handle
powerful parameterization mechanisms, object-oriented paradigms. and concurrency.
However, this has not yet been done. .. -

2 Our Basic Approach

A formal system development invclves the two transitions shown in Figure 1. First,
an informal description of requirements is transformed into a formal statement of what
the sytem is intended to do. Second, that formal specification is transformed into an
implementation that describes how to perform the specified computation. It is the
what-to-how transformation that is the subject of this research. Henceforth, we use
the terms “structural design” and “design” to refer to what-to-how transformations.

For managing the evolution of a system, the crucial difference between a specifica-
tion and an implementation is not the difference in concreteness. It is the complexity




informal requirements  —

functional design

v (informal to formal)

formai specifications j—

structural design
! (what to how)

efficient implementation —

Figure 1: Steps in a formal system development

of the interconnections among system objects. An implementation, especially an ef-
ficient one, will invariably be highly interconnected and somewhat unstructured. On
the other hand, performance is not an issue in specifications and, hence, they tend to
be modular.

Therefore, our approach to change focuses on the formal documentation and anal-
ysis of large-system structures. In particular, we formally record the structural design
of a system during its development, and then use the record to:

1.

3

Explain system organization. A formal record of structural design decisions
can explain how abstract objects and interactions are evolved into a concrete
implementation. This information is needed to make changes to a system.

Control implementation connectivity. Structural invariants can be en-
forced automatically. It is decidable whether or not a structural design and its
implementation are consistent under certain reasonable assumptions.

Find the effects of changes. If the structural design or implementation of a
system is changed, new bugs can be introduced. The number of new bugs can
be greatly reduced if developers are provided with an accurate assessment of the
effects of a planned change. The semantic effects of a change can be isolated in
a system design or implementation thrc .,;h an analysis of (i.e., proofs about)
its structure.

Summary of Main Results

Onr research has resulted in four major results:

l.

The first formal technique for specifving implementation structures. Existing
formal specification languages can describe the structure of a specification, but

2




not the intended structure of an implementation. A specification of implemen-
tation structure is needed to explain and enforce structural design decisions,
the key to managing complexity in large systems.

[A)

A new method for reasoning about changes to a system. The problem of reason-
ing about changes was originally formalized by this author in his Ph.D. thesis
[11]. That solution used a Hoare-style logic and had the practical drawback of
undecidability. We have devised a radically new approach to the problem that
involves a structural approximation of the semantic effects of a change. An
approximate solution is intuitively appealing and it can be found in a decidable
theory.

3. A new technique for controlling interconnections in a system implementation
using standard program analysis and formal verification technology. The ques-
tion of whether a structural specification is consistent with an implementation
1s decidable under certain reasonable assumptions.

4. An innovative prototype system — called PegaSys — that uses pictures as for-
mal documentation. To our knowledge, PegaSys is the first system to manipu-
late nontrivial design structures in ways that take into account their semantics.
There are over a dozen commercially available interactive diagramming systems
that have proved successful in industry but all lack semantics.

Two papers are attached to this final report as appendices. They explain the
points above in some detail. The remainder of this section summarizes our results in
the three areas.

3.1 Structural Designs

To illustrate what is meant by structural design, consider the following diagram:

A superficial reading of this diagram might be that boxes A and B are abstract
operations and the bold line is a communication channel ¢ between them. Althongh
this reading gives a general idea of what is meant by the diagram, it is much too
imprecise for our purposes. Here are some properties the diagram might indicate:




¢ Direct communication: Operations A and B communicate directly through
channel ¢ when they are executed.

¢ Indirect communication: Operations A and B communicate indirectly through
intermediaries via channel c¢. Indirect relationships result from the cumulative
effects of procedure calls on nonlocal objects and on objects passed as parame-
ters.

e Completeness: The only way that A and B communicate is through channel
c. That is, there are no other channels between A and B.

A formal description of the above property is needed so that there is no ambigu-
ity about what is intended and so that analysis based on the specification will be
meaningful.

The formal structural specification of a system consists of multiple levels of detail,
each level containing abstractions appropriate to that level. Most abstract objects are
represented naturally as primitive procedures or variables which are subsequently im-
plemented in terms of one or more similar objects. On the other hand, most abstract
connections are expressed as derived concepts defined in terms of more primitive con-
nections. Abstract connections are used to partition a system into manageable parts
that interact in well-defined and predictable ways.

Next, we present three concrete examples of structural design concepts, defined
in terms of the following primitive concepts of our logic:

mod( P, z) means that procedure P modifies variable z directly or indirectly through
a called procedure. The mod relation is used for global program optimization
in compilers.

z = y means that information flows from a variable z to a variable y under pro-
cedure P provided a change in the value of = can be conveyed to y when P
1s executed. For example, the binding of an actual parameter a to a formal
parameter z causes a flow from a to z.!

=>f, =, = stand for forward, backward, and lateral information flow, respec-
tively. Forward and backward flows model the interprocedural variable bindings
that result from a direct or transitive procedure call. Lateral dow is intrapro-
cedural, involving local variables of the same procedure. Henceforth, r = y is
taken to mean that (z,y) is a forward, backward, or lateral flow.

!'Classical information theory, Shannon [13] and others, is concerned with the amount of infor-
mation generated by a particular event. We are interested in the simpler qualitative question of
whether any information is generated by an event. In other words, we are interested in whether a
change affects an object at all, not in how much it affects it.




call ByV' R(P. Q. plist) models a procedure call from procedure P directly to proce-
dure () with an arbitrary number of actual-formal parameter pairs (plist) having
a value-result semantics.

Types var and proc are used to denote variables and procedures. respectively. Vari-
ables of type vvar are used to specify the different value assignments to an ordinary
variable. The predicate versionOf{(z,y) tells whether a version variable z is associated
with a variable y and the predicate varOf(z,P) tells whether version variable r is
associaied with procedure P.

Example 1 Protecting a variable. [t is often useful to restrict access to a variable
or to restrict the ways in which a variable can be used. For instance. we may want
to allow procedures to read a certain variable but not allow them to write it. This is
easily formalized using the predicate

ReadOnly: var x proc — bool

which is defined by
ReadOnly(z. P) ¥ —mod(P.z)

for r in var and P in proc. For a given variable v, we can write
(Vp: proc)ReadOnly(v, p)
to indicate that no procedure p can modify v. O

Example 2 Restricting variable interactions. A set of variables can be partitioned
into independent subsets using a predicate which says that a variable z is completely
independent of a variable y if and only if a change in the value of y has no effect on
the value of z. This predicate

IndependentOf: var x var — bool

is defined, for r and y in var, by

IndependentOf(z,y) e

(Vz, y: vvar)(VR: proc)[versionOf(Z, z) A versionOf(g.y) D —(3 RN )]

If a variable r is independent of a variable y, we know that y cannot use r as an
intermediary to affect some other variable or procedure. O




Example 3 [nterprocedural channel. Suppose that we want two procedures to com-
municate through a specific variable. We say that a variable z is a channel from
procedure P to procedure @ iff information flows from P to @ through z. This is
captured by

ChannelTo: proc x proc x var — bool

which is defined by
ChannelTo(P,Q,z) &
(3%, 9, 2: vvar)(3R: proc)|versionOf(z, z) A varOf(g, P) A varOf{z,Q) A
. R s s R avi,a R .. . R ., s R <, . R -
(J==rINT=52)V({I=INT=;2)V(§ =T NI = 3))]
for P and @ in proc and z in var. Since z is an interprocedural channel, we need not
consider lateral flows whose purpose is to link interprocedural flows. We also rule out

the possibility of a forward-backward flow, since this would make z a channel from
P to itself. O

Example 4 [nterprocedural partitioning. Assume that a procedure A is not intended
to be connected to a procedure B, which we express by

—ConnectedTo( A, B)

The ConnectedTo relation says that, for any procedures P and @, there is a transitive
call from P to @. or a transitive information flow from a variable referenced by P to
one referenced by @), or both. The predicate

Calls: proc x proc — bool

is defined recursively by

Calls(P,Q) ¥
(3p: plist)[callByVR(P,Q,p) V
(3R: proc)[callByVR(P, R, p) A Calls(R, Q)]]

where plist is a set of possible actual-formal pairings. The predicate
ConnectedTo: proc x proc — bool

is defined by

ConnectedTo( P, Q) %
Calls(P,0) V (3%, §: vvar)(3R: proc)[varOf(&, P) A varOf(§, Q) A & == j]
Notice that information may flow from P to @ as the result of a transitive call from

P to @ (in which case R is P), or R can be a parent of P and @ that transmits a
return flow from P to Q). O




PROCEDURE AddInc(sum,i)
ASSERT call(Add,(sum,i)) AND call(Inc.(i))

END;

sum | AddInc
PROCEDURE Add(a,b) / \
ASSERT affects(a.a) AND affects(b,a) / \
END:

¥ \
PROCEDURE IIlC(Z) a -<—b<-— 1 Z \dd -— —— IIlC
- A

ASSERT call(Add,(z.1))
END:

(a) (b) (c)

Figure 2: A low-level design: (a) textual representation, (b) diagram of implicit
information flows, and (c) graph of call relationships.

3.2 Reasoning About Changes

It 1s undecidable in general to determine the exact behavioral effects of a change, but it
is possible to obtain a precise, conservative approximation by formalizing the problem
in terms of structural concepts. In particular, we say that a change to an object
affects an object y if the pair (z,y) is in the transitive closure of the information
flow relation =. Unfortunately, information flow is not transitive in the usual sense.
That is, if there is flow from some object r to an object y and from y to an object
z, there is not necessarily flow from z to z. As a consequence, the usual notion of
transitivity gives a crude approximation of the effects of a change. To obtain a more
accurate approximation of the true transitive fiows (i.e., those that would occur when
the system is executed), it is necessary to decompose the concept of information flow
into the three special flows and to provide axioms for composing the three flows to
determine the transitive closure of the information flow relation.

As an illustration of why the simple approach will not work, consider the low-level
design presented in Figure 2a. The design consists of several objects: procedures
AddInc, Add, and Inc, and variables sum, i, a, b, and z. Parameters are transmit-
ted using a value-result semantics. The purpose of procedure AddInc, which is not
specified in the figure, is to add the initial values of ¢ and sum and return the result
in sum: it also increments the initial value of : and returns the result in 2.




We are interested. for instance. in whether or not a change to the value of variable
sum can affect the value of variable z. Since two objects can interact indirectly
through anv number of intermediaries, the question is not whether sum = :. but
whether the pair (sum. z) is in the transitive closure of = on the set of all variables.
written sum = :.

We cannot form the transitive closure of = until the information flow relation-
ships implicit in the assert statements are made explicit. The assertion for AddIne
says that it makes two calls, one to Add and one to Inc; the ordering of the calls is
unspecified for the moment. The assertion for Add says that the initial values of a
and b affect some future value of a. The assertion of /nc specifies that it calls Add.

Figure 2b depicts the informaticn flow relationships implicit in this structural
description. Flows not in the figure are assumed to be invalid, since we found it
useful to have a closed-world assumption [12]. For example, we assume there is no
flow in Add from a to b, thereby making b a read-only variable of Add. Procedure calls
noimally cause bidirectional flow between actual and formal parameters. However.
the two calls to Add cause only unidirectional flow from actual parameters : and | to
formal parameter b. since the value of b is unchanged by Add.

Returning to our original question about the possibility of flow from sum to z. we
can use the diagram Figure 2b to trace the information flow path

sum => qg = = (1)

from which we can infer that sum == >. This kind of reasoning can be formalized
in terms of the usual transitivity axiom.

Unfortunately. this simple analysis is much too conservative. A change to the value
of sum cannot affect z if there is no execution sequence for which suin = z. We can
establish that there is no such sequence in our example specification by relating the
information flow relationships in the specification to its calling relationships. which
are illustrated in Figure 2c. Consider the call from Addinc to Add. Procedure Add
contains no procedure calls and it does not allow the value of formal a to affect the
value of its other formal 6. Therefore, the call from Add/nc to Add can only affect
the value of sum by means of the path

sSum == a — sum

Procedure AddInc also calls Inc with actual parameter i. But since iis never affected
by sum (by the closed-world assumption), the call from AddInc to Inc cannot result
in a flow from sum to z from this we can conclude that the call from /nc to Add
cannot as well. This completes an informal argument that ~(sum == z).

To formalize this kind of reasoning, a new axiomatization of the transitivity of
information flow was developed in which a transitive flow is inferred from two indi-
vidual flows only when there is a causal relationship between the individual flows.




That is. we establish that some change in the value of variable r in the flow r = y
causes a change in the value of variable - in the low y = = before we can infer the
transitive flow r = :.

Let 7 denote a logical axiomatization of transitive information flow that takes into
account the causal relationships among individual flows. In addition, let § denote
a structural specification, and let 7 denote axioms for inferring the flows implicit
in specifications. To reason about changes. we have defined 7 and 7 so that the
transitive closure of =. namely,

{{z.y)| TUTUS + ==y},

contains the true information flows in S for systems containing the basic structural
features discussed at the beginning of this section. Moreover. the derivation of the
closure should terminate for any specification S. The transitive closure with respect
to a given specification S serves as the basis for answering questions about changes
to S.

3.3 Controlling Connections Through Proofs

Given a structural specification S of a system. we would like to know that S accurately
describes its implementation. This too is undecidable in general. but again we can
obtain a good conservative approximation.

The proof strategy blends program flow analysis and formal program verification
techniques. It suffices to must show that each level in a structural design hierarchy
is a logical consequence of those primitive structural relations that are true of the
program. Objects in a specification are connected to program objects with a mapping
similar to the one in Hoare [7]. The primitive relations satisfied by a program are
derived from the program automatically with a slightly modified version of standard
program flow analysis techniques [1]. The flow analysis is conservative: for example,
all predicates in the program are treated as uninterpreted symbols. Given the derived
primitives and the mappings. the problem of consistency can be reduced to proving
one or more logical implications in a typed first-order logic, where a type is a finite
and fixed set.

3.4 The Initial PegaSys Prototype

PegaSvs 1s a display-oriented. interactive environment that uses intuitive graphical
pictures as formal documentation to facilitate life cycle activities for large software
systems. PegaSys has been designed to offer the advantages of mathematical rigor
even though users interact with it through pictures. For example. PegaSys provides
standard graphical operations. via a mouse and pointing device. for manipulating




pictures. while at the same time enforcing semantic constraints on these operations
sufficient to guarantee that they make sense in terms of system design. As a re-
sult. PegaSys users can document and explain system designs in a highly visual and
intuitive manner.

Because of their intuitive appeal. pictures have been used frequently by computer
scientists in textbooks. professional publications, and on blackboards to explain svs-
rem structures. However. pictures tend to be inadequate as a means of documentation
because the contain imprecise concepts that can be confusing and misleading. [lor
instance. the same icon is often used to represent a process. a subprogram. and a
data structure, all in the came picture. Similarly, the same arrow may represent the
flow of d-ta to a subprogram. the flow of control to a subprogram. or the writing of
data to a da.a structure, all quite distinct concepts. Failure to make such distinctions
might be satisfactory in a high-level design. but is not acceptable for detailed design
refinements that serve as the basis for system evolution.

The goal of the PegaSys system research has been to demounstrate that it is pos-
sible to effectively support the formal specification and analysis of implementation
structures. The approach has been to make use of pictures to simplify specifications
and to take advantage of decidability to eliminate the need for user involvement in
proofs.

The initial PegaSys prototype was extremely effective in creating the illusion that
logical formulas did not exist, thereby providing the advantages of formal methods
but not the drawbacks. The PegaSys prototype deals with pictures that represent
direct connections among such objects as variables, types, procedures, and modules
in sequential systems. As explained in an earlier section, we have since extended
our specification technique to include indirect relations. Lower-level objects. such as
statements and ¢xpressions. are not modeled. A system design is a hierarchy of snuch
pictures. and a PegaSys user must specify the mapping between levels in a design.
Given this mapping, PegaSys can prove that the design levels are consistent with each
other. This prototype also supported programming in Ada and connected pictures to
Ada programs.

We are presently planning a new implementation of PegaSys that incorporates the
advances we have made in 1ts underlying technology. The initial FegaSys prototype
was “ritten in in Interlisp-D on (now obsolete) Xerox 1100-series personal computers.
The wew implementation would be better engineered, written in portable Common
Lisp on Sun workstations. and vould make use of standard components whenever
possible. We believe that the planned version of PegaSyvs would represent an impor-
rant step in the introduction of formal methods in the engineering of real software
systems.
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Related Research

1. The PegaSys system is unique in its use of graphics to mask details in the formal
design and proof of structural system properties. Other graphical systems have
very impoverished structural design languages (see below) and do not perform
a semantic analysis of designs. An interesting graphical system for behavioral
specification has recently been developed by Harel [3].

2. Previous work on structural design languages falls into the following categories:

e Programming languages. Block structure, import/export lists, and
encapsulation mechanisms have been used to specify referencing environ-
ments in several programming languages, including Euclid, Mesa, Modula-
2. Ada. and PIC/Ada. These features describe access to objects but not the
use of objects. Furthermore, they deal solely with program-level objects.
Module interconnection languages have essentially the same drawbacks.

e Program design languages. Over a dozen structural design languages
have been developed since they were made popular by Yourdon. De Marco,
and others; see [9] for a survey. These languages typically represent pro-
gram structure as a directed graph in which nodes denote program objects
and arcs denote structural relations among objects. Relations in a graph
are low level and not formally defined. Moreover, there is no mechanism
for properly defining new relations; thus, it is not possible to formalize
many common design abstractions.

¢ Formal specification languages. These languages, e.g, Anna (8], Larch
(6], and OBJ [5], focus on behavior, not structure. Some contain a form of
import/export list.

¢ Derivational techniques. Program transformations describe how to
transform a given structure into a different and possibly more efficient
structure. A related technique presently gaining much attention involves a
use of constructive type theory in which programs are correct by construc-
tion. Both approaches have been applied primarily to algorithm design.
In contrast, our approach is focused on how algorithms are put together
to form a system.

3. Previous work on the analvsis of system changes is either at too low a level or
limited by undecidability:

- Program inspection. In practice, the dominant way of determining the
~ffects of a change is for the human to interpret various relations extracted
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from the program itself. The relations include direct {cross-reference) re-
lations and transitive relations about calling relationships and data flows.
Numerous tools have been developed which derive such relations, but they
are used primarily for other purposes, such as program optimization [2],
the detection of simple errors [4], and documentation [10]. We are not
aware of any existing tool that provides a systematic way of combining the
relations to determine the effects of changes.

¢ Semantic proofs. In the context of formal program verification, Moriconi
[11] developed a general approach to reasoning about the semantic effects
of changes. Given a functional specification of a system and a Hoare-style
logic, the method determines what formulas must be proved to isolate
the ezact semantic effects of incremental changes. Unfortunately, these
formulas are in an undecidable theory, and experience indicates that they
cannot be proved without substantial human assistance. Consequently,
the approach is impractical for everyday use.
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Visualizing Program Designs
Through PegaSys

Mark Moriconi and Dwight F. Hare, SRI International

PegaSys is concerned
more with explaining
program design than
describing programs,
and offers more
extensive support to
programming in the
large than other
graphical systems.

72

his article is an introduction to

many of the interesting features
of PegaSys,* an experimental systen
that encourages and facilitates extensive
use of graphical images as formal, ma-
chine-processable documentation. Un-
like most other systems that use graph-
ics to describe programs, the main
purpose of PegaSys is to facilitate the
explanation of program designs.

A program design is described in
PegaSys by a hierarchy of interrefated
pictures. Each picture describes data
and control dependencies among such
entities as ‘‘subprograms,’ ‘‘pro-
cesses,” ‘‘modules,” and ‘‘data ob-
jects,”” among others, The dependen-
cies include those represented in
flowcharts, structure charts, dataflow
diagrams, and module interconnection
languages. Moreover, new abstrac-
tions can be defined as needed.

What is particularly interesting
about PegaSys is its ability to: (1)
check whether pictures are syntactical-
ly meaningful, (2) enforce design rules
throughout the hierarchical decompo-
sition of a design, and (3) determine
whether a program meets its pictorial
documentation. Much of the power of
PegaSys stems from its ability to repre-
sent and reason about different kinds
of pictures within a single logical
framework. This framework is trans-
parent to PegaSys users in the sense

* Programming Environment for the Granhical
Anaiysis of SYStems.

DOIA-ITA2 33 0800007 2S0L 90 198% (EEE

that interactions are in terms of icons
in pictures. For example. formal prop-
erties of a program are described bv
standard graphical operations on icons
rather than by sentences written in a
formal logic.

Excerpts from a working session
with PegaSvs are used to illustrate the
basic style of interaction as weil as the
three PegaSys capabilities.™ We de-
scribe the key ideas behind PegaSys
elsewhere. !

Background and related work

Pictures have been used extensively
by computer scientists in textbooks,
professional publications, and on
blackboards to explain dependencies
in programs. Although pictures mav
be quite perspicuous, they have tended
to be inadequate as a means of doc-
umentation. One reason is the use of
imprecise concepts that result in pic-
tures that are confusing and easily
misinterpreted. For example, the same
graphic symbol is often used to repre-
sent a process, a subprogram, and a
data structure, all in the same picture.
Similarly, an undifferentiated arrow
might represent the flow of data to a
process, the flow of control between
subprograms. or the writing of data

tThis article 1s acondensed version of a caper con-
tained 'n a technical report. ! Because of space
limitations, ~e have removed many ot the piciures
that describe the design of the exampie svstem ge-
velopea curing the session.
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into a data structure, all quite distinct
concepts.

While formal documentation does
not suffer from this imprecision, its
advantages have tended to be out-
weighed by the difficuity of construct-
ing and understanding it. Moreover,
formal documentation has inade-
quately captured dependencies among
components of the program it is in-
tended to describe. An understanding
of such dependencies is crucial through-
out the software life cycle, especially
during maintenance, and becomes in-
creasingly more difficuit to glean from
a program as it increases in size and
complexity.

In light of these observations,
PegaSys attempts to take advantage of
pictorial communication in describing
data and control dependencies while,
at the same time, maintaining the ad-
vantages of mathematical rigor.
PegaSvs is differentiated from pre-
vious graphical systems by its wider
range of representation and analysis
and its more extensive support for
programming in the large. Previous
work most closely related to PegaSys
is concerned with representation and
analysis techniques. We review this
work and then describe related
systems.

For a system to perform any sort of
meaningful analysis of a picture, it
must maintain a logical representation
of the picture. A number of formal-
isms have been developed that have, or
easily could have, a pictorial render-
ing. Examples are flowcharts,* struc-
ture charts,® pictographs,$ dataflow
diagrams (surveyed in Davis and
Keller™), plans, ® and module intercon-
nection languages.*!2 All of these for-
malisms capture data and control
dependencies, typically down to exe-
cutable program fragments. Pictures
in PegaSys describe what we believe to
be the important design concepts in
these formalisms, plus other concepts
as well.

August 1985

The presence of a logical representa-
tion for a picture provides a basis for

tion to checks for syntax errors, two
other sorts of syntactic analysis of pic-
tures have been performed by previous
systems. The first involves the hierar-
chical refinement of a picture. If we
think of a picture as a graphlike
diagram, a node in a diagram may be
replaced by a diagram prowvided that
the replacement preserves the connec-
uvity of the original diagram. Example
uses of this idea can be found in Davis
and Keller’ and Rich and Shrobe.$
The second sort of analysis concerns
the relationship between a picture and

Pictures in PegaSys describe how
algorithms and data structures fit
together to form the design of a
larger program.

.- |
the program it is intended to describe.
If a picture is not executable, it is im-
portant to verify whether it accurately
describes the program. For example,
the flow of control in a program can be
determined purely syntactically if we
assume that conditional control paths
may always be executed. Similarly, the
‘‘uses” and ‘‘requires’’ relations in
module interconnection languages can
be verified using type-checking tech-
niques.'? In contrast, PegaSys addi-
tionally places semantic constraints on
design refinements and programs.

One such constraint deals with the
logical consistency between a picture
and the program it is intended to de-
scribe. Traditionally, program verifi-
cation efforts have employed general
methods for establishing the logical
consistency between a formal specifi-
cation and a program. '3 The PegaSys
verification procedure is more special-
ized and simpler, and does 7ot have

the practical drawbacks of traditional
approaches.

Arelated svstern that deals with pro-
gram dependencies is the PECAN sys-
tem. !4!5 PECAN provides multiple
‘“views’® of a program by extracting
dependencies directly from a program
and then displaying them graphically.
A similar, albeit nongraphical, ap-
proach at the level of specifications is
described in Swartout.!6 The ap-
proach taken by PegaSys differs in
that the program designer is responsi-
ble for describing a program in terms
of the abstractions used in its concep-
tualization. This approach is based on
our belief that it is difficult, if not im-
possible, to generate these abstractions
from the final program.

Other related systems that make ex-
tensive use of graphics to describe as-
pects of programs fall into two major
categories. First, there are a number of
systems for ‘‘animating’’ dynamic
program execution, a good example of
which is the Balsa system. !” Balsa cre-
ates simulations in which sophisticated
graphical representations of an algo-
rithm and its data structures are con-
tinually updated throughout the exe-
cution of the algorithm. There are other
examples of animation systems. !’ =
The second category is concerned with
“visual programming,’’ i.e., program-
ming by spatial arrangement of
icons. %" Both kinds of systems have
tended to focus almost exclusively on
programming in the small—that is, on
individual aigorithms and data struc-
tures. Pictures in PegaSys, on the
other hand, describe how algorithms
and data structures fit together to form
the design of a larger program.

Getting started
Figure | shows a bitmap display

connected to a Xerox personal com-
puter.” Screen real estate is divided

‘PeqaSys 1s imptemented n Interhsp-0 ana runs
on Xerox 1100-senes personal compuyters.
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Figure 1. First levei in broadcast network documentation hierarchy.

into adjacent, nonoverlapping rectan-
gular areas called windows.® Screen
layout will be adjusted throughout the
scenario in an attempt to make max-
imal use of screen real estate. This is
done by pointing with the mouse. The
small windows down the right-hand
side are menus containing commands,
each of which may be selected by point-
ing at it with the mouse. The black strip
at the top of each window contains the
window’s name. The name of a win-
dow is intended to be suggestive of its
contents. For example, the name
‘‘Network:Levell" indicates that the
contents of the associated window is

-Our display maragement strategy 's pattemed
directly atter he riiing strateGy used in Cedar.
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the first level of the picture hierarchy
for a network.

For the most part, arguments to
commands are selected or constructed
by pointing, and pictures are manipu-
lated by pointing as well. On-line help
and feedback on errors appear in the
prompt window in the lower-left cor-
ner of Figure 1.

The example session used to illus-
trate aspects of PegaSys is concerned
with the development of a realistic
broadcast network. It is not necessary
to understand the details of the net-
work or its implementation in order to
get a ‘‘feel’” for the capabilities being
demonstrated. Particularly germane
aspects of the example network are ex-
plained as needed. As the session pro-

gresses, details of the network are
omitted so as to focus attention on the
aspect of PegaSys being described.

The session begins with the design of
the overall broadcast network down to
the host level. It then focuses on the
dev.:lopment of a single host, whose
multileve]l design and implementation
is reused several times in the overall
network. The network was imple-
mented in the Ada programming lan-
guage-? (using PegaSys) and subse-
gquently run on a Data General MV
10000 computer.

The meaning of a picture

A crucial aspect of the PegaSvs
design is its treatment ot a picture as
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both a graphical and a logical struc-
ture. These structures affect user in-
teraction with PegaSys in several im-
portant wavs.

Dual interpretation of pictures. A
picture is represented as a graphical
structure composed of icons and their
properties, such as size and location.
Icons in a picture correspond to predi-
cates in the underlving logical repre-
sentation of the picture, This logical
structure captures the computational
meaning of a picture; each predicate in
this structure denotes a computational
concept expressed by the picture.

The picture shown in Figure 1 con-
tains several icons: four ellipses, a rect-
angle, several arrows, and several
character strings.”* These icons denote
several concepts about the exampie
network. Each of the four hosts in the
network is modeled as a process (indi-
cated by an ellipse); the communication
line by a module (indicated by a dashed
rectangle); and a packet of data by a
type (indicated by a label on arcs).t In-
terrelationships among hosts, packets,
and the line are described by the
““write” relation (denoted by the letter
W on arrows) and the ‘“‘read’’ relation
(denoted by R).

At a first approximation, the picture
says that the broadcast network con-
sists of four hosts that communicate
bv means of a line. More precisely,
processes named Hostl,...,Host4 write
values of type pkt into a module called

*Note hat type okt s represented Dy text in the
Ilower feft ¢f the picture rather than by an con |t
PegaSys aoes "ot have an appropriate icon for a
concept, :he cuavention 1s (0 Qispiay its iogical
rapresentation as text.

*A process sequentiaily executes a sernes of ac-
tions that may proceed 10 parallel with actions of
ather processes: a module 1$ acollection of one or
more iogicaily reiated entities: and a type I1s a.
p0ssibly atruclured. value set. The line s not
modeied as a 0rocess because 1ts actions are imti-
ated by nosts
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Figure 2. Explanatory text may be associated with computationaily meaningfui

icons.

Line and read values of the same type
from the Line module.

This statement about the network is
represented in PegaSvs by a conjunc-
tion of the predicates

process (Hostl), process (Host2),
process (Host3), process (Host4),
module (Line), Type (pkt),

write (Host!, Line, pkt),

Read (Hostl, Line, pkt)

with similar Wrire and Read predicates
involving Host2, Host3, and Hosi4.
Notice that every predicate corre-
sponds to a different icon in Figure 1.
Purely cosmetic changes to a picture,
such as an adjusitment to the size or
location of an icon, do not require up-
dates to the logical representation of
the picture.

The logic in which pictures are rep-
resented is called the form calcuius. A
syntactically correct picture is said to
describe the form of a program and is
represented by a well-formed formula
of the form calculus.

The foilowing terminology will be
adopted to refer to components of a
picture. Active entities may initiate ac-
tions that create, destroy, or transform
data objects (variables); the data ob-
jects themselves are called passive en-
tities. The existence of an active or

passive entity is determined by its
membership in a defining relation.
An example of an active entityv is pro-
cess (Host!), and an exampie of a
passive entity is Tvpe (pk:). The term
entity refers to both kinds of entities.
A relationship among entities, such as
specified by the Write relation, is
called an interaction.

Entities and interactions specified
in pictures correspond to either
primitives of the form calculus or
predicates defined in terms of the
primitives. The primitives were care-
fully chosen to facilitate the defini-
tion of new concepts.*

A brief summary of the primitives
will suggest the general kinds of con-
cepts that can be expressed bv pictures
in PegaSys. Active entitles are spec-
ified by ‘‘subprogram,’ *‘process,’’
and ‘‘module’’ relations. We have
chosen this relatively course grain in an
attempt to capture the salient aspects
of the design of a program, as opposed
to the details of particular algorithms.
Passive entities are specified by a
‘‘name’’ relation and by ‘‘simple
type’’ and ‘‘structured type ' relations.
A name is used to refer to the object
and a tvpe to denote a (possibly struc-
tured) value set. The manipulation
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Figure 3. Creation of a level and seiection of the line for refinement.

and sharing of data objects are spec-
ified by means of primitive interaction
relations that capture general notions
of data object declaration, data object
visibility, aliasing of names, modifica-
tion of the value of a data object, and
accessing the value of a data object.
There are also primitives for modeling
(synchronous and asynchronous) in-
terprocess communication and ordi-
nary transfer of control. See reference
3 for details.

Finding out about what is not in a
picture. A picture may be augmented
with explanatory text. In particular,
text may be associated with any com-
putationally meaningtul icon. If the
user points at an icon and presses a
button on the mouse, the associated
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pop-up comment will appear on the
display until the user releases the but-
ton. Figure 2 shows the pop-up com-
ment for the line module. Given this
and related features of PegaSys, the
best way to gain an understanding of
the pictures presented here is by means
of an interactive dialog with PegaSys.

Manipulation of pictures

Interactions with PegaSys are in
terms of icons. However, graphical
operations on pictures are restricted by
logical constraints imposed by the
form calculus. These constraints are
intended to ensure that graphical oper-
ations make sense computationally.

Graphical manipulation of pictures.
Graphical manipulation of a picture
depends upon a one-to-one mapping
between computationally meaningful
icons and predicates. An icon and its
associated predicate denote the same
concept.

Perhaps the simplest example of
how PegaSys takes advantage of this
mapping concerns the seleczion of a
concept, which is done by pointing at
the appropriate icon. For example.
positioning the mouse to point at the
ellipse labeled Hostl in Figure | and
clicking (depressing and releasing) a
button on the top of the mouse
results in selection of the predicate
process (Host1).

Another example concerns the con-
struction of pictures. Pictures are con-
structed by using a series of graphical
operations on the display that have the
twofold effect of building a graphical
structure and a corresponding formuia
in the form calculus. Each operation
involves the selection of a concep
from a menu followed by its placement
at a location on the screen. An icon is
associated automatically with most
concepts. If a concept must be named,
the user must enter a name fcr it and
PegaSys will size the associated icon
relative to the size of the name. Place-
ment is done by pointing. Lavourt ad-
justments may be made by pointing at
the desired icon (selection), pointing at
the destination location, and clicking a
button on the mouse. PegaSys reposi-
tions the selected icon at the specified
location, readjusting related icons
(such as connected arrows) as best it
can.

Logical constraints on graphical
manipulations. Both syvntactic and
semantic constraints are placed on
graphical manipulations. An example
of the former concerns the construc-
tion of pictures. While pictures are
constructed bv means of standard
graphical operations, the form calcu-
lus guides the entire process. PezaSys
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uses the grammar of the form calculus
to guide the construction of pictures in
much the same way that a structure-
orienzed editor uses the grammar of a
programming language to guide the
construction of programs. Pictures
may contain ordy concepts that are
primitive in the form calculus or that
have been detined in terms of the
primitives. PegaSys uses the tyvpe con-
straints on predicates to prevent a
nonsensical composition of concepts.
For example, 1f a predicate has been
derined to take two processes as its
arguments, PegaSys ensures that both
arguments are provided and, more-
over, that both are processes. If not, a
type error Is signaied.

Semantic constraints are needed to
restrict picture refinements and to
analyze the relationship between a pic-
ture hierarchy and the program it is in-
tended 1o describe. In both instances,
it is necessary to prove logical for-
mulas in the form calculus. However,
this can be done quickly and without
user interaction (due in part to the
decidability of the form caicuius).

Hierarchical decomposition of
pictures

A hierarchy of pictures related ac-
cording to the PegaSys design rules is
said to describe the design of a program.

Creating a new level in a hierarchy.
Each level in a picture hierarchy is a
description of a program at a par-
ticular level of detail. A level is formed
by a sequence of refinements to the im-
mediately preceding level in the hierar-
chyv. A refinement adds detail to an ex-
isting concept and is not allowed to
delete concepts from a picture. There-
fore, a concept cannot appear at any
level in a hierarchy (except the top one)
unless it is a refinement of a more
abstract concept.

The procedure for building a new
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level in a hierarchy is as follows. As
soon as the user indicates a desire to
create a new level, PegaSys makes a
copy of the immediately preceding
level. The new level is formed by a se-
quence of refinements to this copy. An
individual refinement involves the
following three steps: (1) selection (by
pointing) of the relation to be refined,
(2) construction or selection of its re-
placement. and (3) selection of the ap-
propriate menu command.” PegaSys
checks whether the refinement satisfies
its design ruies.

*This 1s a good example of the modeless style of
interaction supported By PegaSys n that argu-
ment selection precedes command selection. See
Tesler's aiscussion ot this approach to man-
macnhine intertacing. *

Refinement of an active entity. Re-
cail that an active entity is an entity
that has the ability 1o manipulate data.
The active entities in Figure 1 are the
host processes and the line module.
The next step in the scenario illustrates
a refinement technique called acrive
entity refinement—the first, and sim-
plest, of three refinement techniques
emploved in the network devel-
opment.

Provided the replacement preserves
interactions invoiving the replaced en-
tity, PegaSvs allows an active entity to
be replaced by a picture. The three
steps in an active entity refinement are
illustrated by Figures 3 through 3. The
window at the bottom of the display
(see Figure 3) contains a copy of level
1, where the Line module has been se-
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lected for refinement (indicated by
boldface highiighting). The user next
constructs a replacement for the line,
as shown in Figure 4. Solid-lined rect-
angles denote ‘‘subprograms’’ that are
intended to specify the interface to the
line; Out_Pkt is a variable modified by
these subprograms.® Finally, the user
indicates (by pointing) its exact con-
nection between the replacement for
the line and the hosts (see Figure %).
This completes the retinement, and

*The access and mod ralations in Fiqure 4 require
Cut__P«t 3 neavanacie teicnging 1o the physicai
‘tne module

"3

PegaSys checks that interactions at
level 1 are preserved at this level and
that the entire picture at level 2 satisties
the type constraints imposed by the
form calculus. (PegaSys accepts only
well-formed pictures and, therefore,
requires that type errors be removed
before it attempts any further analysis
of the oitending picture.)

Figure § also illustrates a useful
aspect of picture layout in PegaSys.
Even though the Snd and Rcv entities
appear four times each at level 2, thev
describe only one interface to the line
and, therefore, appear onlv once in the
internal logical representation of the

picture. [n general, duplication is a
good technique for avoiding crossover
and curved lines.

Views are used to manage complexi-
ty. We are now readyv to design the
hosts in the network. Rather than de-
signing four separate hosts, our strate-
gy will be to design one host and then
“replicate’’ it four times at level 2 of
the network hierarchy (see Figure ).

Figure 6a shows the first level in the
design hierarchy for a host. This pic-
ture is not particularly perspicuous
because it mixes several important
properties of a host. These properties
may be separated by means of thres

CCMPUTE=




views (explained below), obviating the
need to study Figure 6a.

In general, muitiple views of the
same picture are used to manage com-
plexity or to emphasize particular
aspects of a picture. A view in PegaSys
is a single grouping of logically related
icons from a picture. Views are pres-
ently constructed interactively by
structured selection and positioning of
related icons. A more sophisticated
view mechanism, based on relational
database technclogy, is planned.

Two of the views describe the two
steps in interhost communication—
namely, establishment of a commun-
cation link (i.e., a channel) berween
hosts (Figure 6b) and transmission of
an actual message (Figure 6¢). [n Fig-
ure 6b, a sender process asks a data
packet protocel to open a channe be-
tween it and another host. (A single
host may have muitiple open chan-
nels.) If the channel is successfully
opened, the variable OK has the value
true and chan contains the name of the
open channel. If the attempt to initiate
a connection fails, OK has the value
false. The receiver opens a channel in
the same manner.

Figure 6¢ describes message trans-
mission. The sender sends a message
(msg) over the open channel (chan)
and receives back an indication as to
whether the transmission was suc-
cessful. The receiver, on the other
hand, tells the data packet protocol
that the channel called chan is open
and awaits the arrival of a message.

The third view, shown in Figure 64,
describes the interface between a host
and an external network backbone.
This view says that a host reads and
writes packets by means of subpro-
grams Rcv and Snd, respectively. This
interface would be suitable for a vari-
ety of network configurations, in-
cluding the line interface in Figure $.
We will say more about this interface
later when we ‘‘paste’” the completed
host design into our network.

Refinement of an interaction. We
have seen one example of how refine-
ments add detail to an existing design
concept. In particular, a refinement of
an active entity adds detail in the sense
that it syntactically elaborates the enti-
ty and preserves interactions in the

design. (Pictures only suggest the
semantics of entities by means of
mnemonic entity names. [t is expected,
but in no way enforced, that the refine-
ment of an entity provide a more
derailed description of the computa-
tion suggested by the entity name.) For
refinements of interactions, it is possi-
ble to enforce stringent logical re-
quirements—in particular, a refine-
ment of an interaction must be a more
detailed description of the interaction.
For example, if a picture says that an
entity ‘‘writes’’ into a particular data
object, then refinements of the notion
of writing must specify one of the pos-
sible ways in which writing may occur.

The sequence of steps performed in
refining an interaction are illustrated
in Figures 7 through 10. The user first
selects a datarlow reiation D (see
Figure 7). Its replacement is con-
structed by selecting the menu com-
mand for adding a relauon and then
the Writere{ation from a pop-up menu
(see Figure 8). Note that the datarlow
relation has disappeared while it is be-
ing refined. The Write relation takes
three arguments, two of which are
selected in Figure 8. The two selections
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Figure 8. Selection of the Write reifation from a pop-up
menu to replace the dataflow relation selected in Figure 7.
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Figure 10. The dataflow reiation of Figure 7 has been
The cursor has changed to prompt for a selection.

replaced by the Write relation (abbreviated as W). Valida-
tion of this refinement required a logical proof.
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Figure 11. Selection of passive entity host__pkt with a

pop-up comment explaining its seiected refinement.

are the bold ellipse (whose name
Line_Pkt_Protocol is occluded by
menus) and Send_Host_Pkt. The third
argument is selected in Figure 9. (The
cursor has changed to let the user
know that a selection is required.)
The final result is seen in Figure 10,
which specifies that a data object of
type host_pkt is written from
Send_Host_Pkt to Line_Pkt_Protocol.

PegaSys allowed the replacement of
the DataFlow relation by the Write
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relation because it was able to prove a
certain logical relationship between
them. Roughly speaking, the refine-
ment of an interacticn is said to add
detail if the interaction is a logical con-
sequent of its refinement. This logical
relatonship is verified by means of a
(fully automatic) logical proof.”

"This procedure applies ‘0 any derived relation,
while the active entity refinement strategy applies
only to pnmitive active entities.

Figure 12 The result of the refinement started in Figure 11.

Refinement of a passive entity.
Recall that a passive entity is a data ob-
ject manipulated by active entities. A
data object is characterized by a name
(which is used to refer to the object)
and a simple or structured type (which
denotes a set of possible values). A
passive entity refinement, unlike
refinements described earlier, does not
necessarily replace an existing relation;
it usually augments a partial charac-
terization of a data object. The sim-
plest example is the addition of a miss-
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Figure 13. Associating entities in pictures with program tex:.

ing name or type to a data object. A
more complex example involves the
specification of *he structure of a glob-
al tvpe. (All nvpes are global.) It is
often convenient to specify different
instances of the same tvpe differenty.
In particular, only the relevant com-
ponents of a structured data object
need be specified ‘or each instance of
the object.

The refinement of a single instance
of atypeisiilustratedin Figures 11 and

AuGust "98S

12. In Figure 11, the user has selected
the type host_pkt (indicated by the
bold rectangle), constructed the re-
fined structure (the struct Type relation
at the present position of the cursor),
and entered the pop-up comument ex-
plaining the relation. Figure 12 shows
the completed refinement. This refine-
ment of host_pkt into a four-tuple ap-
plies only to the selected instance of
type host_pkt. Components of the
host_pkt structured type, such as host#
and pkt_kind, can be further refined

into structures and substructures using
the structTvpe relation.*

Sometimes it is convenient tc refine
an instance of a simple type into an-
other simple type, rather than a struc-

*In orger (0 avond Siutter on the Iisgiay. simgie
types are not actually rectaced by structured tvpes
inpictures. For exameote, 1ost__oktwas not actual-
ly reptaced in the micture Dy ‘he four-tuple descnd-
ing :ts structure. However. :t *he user points at
host__pkt (on the arc between Send_ Host__ Pkt
ang the parally occiuded 2iipse) ang presses a
button on the mouse, the spec:tiec struciure s
displayed (See Figure 12).
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Figure 14. A design is shared through its interface entities, which are connected

to another design by pointing.

tured tvpe. This is doneif a single tvpe
1s used 10 denote a union of tvpes. For
exampie, we use the type pkt in our
netvork as an absiraction for two
different kinds of packets. a line
packer and an acknowledgment packet.
PegasSve ailows us to repiace pkt by
ine_pkt in one refinement and by
ack_pkt :n another. (Eventually, line
packet line_pktisrelinedinto < host?,
host#, seq, host_pkt > . This packet en-

“u
[i9]

capsulates host packets and contains
an acknowledgment bit (of type seq)
required by the line-level protocol. An
acknowledgment packet is refined into
< host#, host4, seq>.)

Reasoning about programs

We omit the development of the re-
maining levels in the host hierarchy

(which are described in reference 1)
and rejoin the session. We are now
ready to implement the host in Ada
and :o venify that its implementation is
logically consistent with the host de-
sign. Programs are written interactive-
ly using the PegaSys structure-oriented
editor; the verification process does
not require human intervention except
to establish the correspondence be-
tween entities in a picture and program
COnStrucss.

Each correspendence is specified by
two structured selections, one from a
picture and one from a program. This
is lustrated in Figure 13, where the
user has selected an entity called
Send_Host_Pkt (indicated by the bold
rectangle) and an Ada program unit
called SEND_HOST_PACKET (indi-
cated by the underlined text). Issuing
the Associate menu command (see the
cursor) causes PegaSys to record the
specified association.

PegaSys requires that each aronmuc
entity—i.e., one that is not refined—
must be associated with exacty one
program construct. Active entities
must be associated with program units
(in the case of Ada. a subprogram,
package, task, or generic) and passive
entities with data object or tvpe
declarations. The kind of an entity
determines what it can be associated
with. This association may occur at
any stage of the development and at
anv level in a design hierarchy.

Nonatomic entities are not allowed
to be associated with program con-
structs. We just saw that the type
abstraction called pkt was repiaced by
.ne_pkt and ack_pkt. [t does not
make sense to require type pkt to be
represented in the program, only that
line_pkt and ack_pkt be represented.
However, in general, there are situa-
tions in which it would be desirable to
associate nonatomic 2ntities with pro-
gram constructs. The association
would have to be restncted based upon
properties of the refinement history.
PegaSvs maintains this history but
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as ver provide this capabiiity.

Onczarp ﬂgfam SO Usiruct has been
associaled ‘.w.m gveryatomic 2nuyina
fierarchy, PegaSys can attempt (0
prove tha:the am and the hierar-
cnv are logieally consistent. That s,
P=gasvs proves that the Jowes: levef in
a hierarchy is logically consistent with

2 program it i$ intended o describe.
(This does not mean that an entire
hierarchy is consistent with a program.
P=2aSvs shows that every level in a
fuerarchy fotlows rrom the immediate-
v oreceding level by valid appiications
of our refinement rules and that the
‘owest evel s consistent with the pro-
gram :t is intended to describe.) The
PegaSvys proot procedure has the fol-
lowing wo important characternstics:
(1) properties of nested program umnits
are :nherited by thetr parents and (2)
specified interactions can be satistied
In a variety of ways by an implementa-
uon.: Without these considerations,
impractical constraints would be
piaced on an implementation.

[t should be pointed out that
PegaSvs is actuaily proving that a pic-
ture is logically consistent with a pro-
gram under a reasonable tnterpreta-
nonof the program. PegaSys presently
assumes that the consistency between a
picture and :he program it is intended
to descrite does not depend upon cer-
tain properties of its implementation.
For example, it assumes that consis-
tency does not depend upon ‘‘dead”’
controi paths cr aliasing of names in
the same context. For the sorts of
properties described by pictures in
PzgaSvs, the assumpuions appear to be
reasonabie and to coincide directly
with our (nruttive mode! of what such
proofs shouid mean. These assump-
nons, together with the decidability of
the Jorm caiculus, 2natle PegaSvs to
fuilv mechanize consistency proofs.

Joes not

-
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Reuse of a hierarchy

Having completed the host (its
design. impiemenration, and verifica-
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Figure 15. Hosts are marked to indicate reuse of an extant development,.

tion), we would like to reuse it four
times in Figure § with mirumal redup-
lication of previous work. Beiow, we
refer to the presently active develop-
ment as the primary one and the
development that we intend to reuse as
the secondarv one. At this stage of our
example, the network is primary and
the host secondarv. We first consider
reuse of the host design then its im-
piementation.

There is a simple, vet useful, way to
connect primary and secondarv de-
signs. An agromic active entity in a
primary hierarchy may be replaced by
an entire secondary hierarchv pro-
vided that (1) the atomic active entities
that serve as interface to the secondary
hierarchy are ‘‘matched up' with ac-
tive entities of the primarv hierarchy
and (2) interactions with the replaced
entitv of the primary design ars pre-
served (in the same sense as with 1ctive
refinements).

This procedure is illustrated in
Figure 14. The top window shows the
lowest level ot the network hierarchy,
and the bottom one shows the highest

level of the host hierarchy. We want o
replace each of the host entities in the
network (which are atomic) with the
entire host hierarchyv. Recail from
Figure 6d that a host interfaces with a
network backbone bv means of the
atomic Snd and Rcev enuties. The Snd
and Rcv entities of the host are
associated (by pointing) with Snd and
Rev of the network, respecuvelv. This
pairing is done four times. once ‘for
eachreuse of the host. In Figure 14, the
user has started the series of pairings
by selecting the leftmost Snd sub-
pr. . the network and Lhe Snd
subprograin of the host inter?
Figure 15 shows the final result.
double-ringed ellipse has been drawn
around the network hosts to indicate
their connection to another design
hierarchyv.

Reusability ot an implementation 1s
achieved by direct sharing ot interface

~Q-

*Things ¢o not alwavs ~ork 2ut as ‘ortuitousiv as
N th1s @xampte. 'n paricyiar nlertaces detween
designs go nct alwavs nNave .centicat nteractcns
Inthis event, 'tis somehmes Dossitie (3 introduce
a "Jummy " entity that serves as an .ntertace ne-
tween the two designs
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code. For example, the implementa-
tion of Snd for the host must be iden-
tical, possibly with renaming, to the
implementation of Snd for the net-
work.* This is not as restrictive as it
might sound. Most often, the interface
of the secondary reusable implementa-
tion consists of code skeletons involving
only headers for program units needed
in the verification of the secondary
design. Note that, under this condition.
reverification of the secondary imple-
mentation is unnecessary.

At this point, the reader should not
be misled into thinking that PegaSys
always avoids unnecessary work. In
fact, PegaSys presently is not incre-
mental and duplicates work in many
commonly occurring situations. In this
example, the secondary host design
and implementation are reused before
the network has been implemented
and verified. PegaSys would have to
reverify the entire network (except for
the host) if the network had been ven-
fied before reuse of the host. Our first
priority has been to develop the basic
capabilities of _PegaSys, and we are
now beginning to consider the prob-
lems of incremental analysis.

Having completed ihe host and
reused it in the development of the net-
work, the remaining task is to design
and implement the physical line
module. As the rest of the session
follows the pattern of development
already described, we omit it here.

PegaSys is an experimental system
that we plan to extend in a
number of ways. One area in which it
1s presently lacking involves the rep-
resentation of persistent data and data
dependencies, both of which arise in
database applications. We expect to
add several new capabilities, such as
incremental 2nalysis of changes, a
sophisticated view mechanism, and a
dvnamic amimation and testing facili-

*The present mpiementation requires denticai
~amres,
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ty. Animations would display partic-
ular execution states in terms of hierar-
chical pictures of the program design.
In Figure 5, for example, we might
show a packet flow from a host to the
line whenever the ‘‘write’ relation is
satisfied.

While the precision and descriptive
capability of pictures has legitimately
been questioned in the past, PegaSys
seems 1o suggest that it is possible to
profitably combine both graphics and
logic for a rich domain. Qur limited
experience suggests that PegaSys
makes techniques more palatable to
program developers. [t is our expecta-
tion that such uses of graphics will lead
to the utilization of formal documen-
tation and analysis techniques by a
wide, possibly mathematically un-
sophisticated audience. —
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Abstract

A logical technique is presented for approximating the semantic effects of a
change to a software system. The new method uses proofs about a system’s
structure to obtain after finitely many steps results that are reasonably close
to optimal. The technique is general enough to apply to implementations and
to formal specifications of abstract design structures, provided that abstrac-
tions are defined in terms of certain predefined primitives. An experimental
implementation has been completed in Prolog.

1 Introduction

Programmers are continually faced with the problem of modifying an existing or
partially developed system. Modifications must be made for several reasons: to
correct erroneous behavior, to increase functionality, to adapt to a new environment,
and to improve a correct implementation. A major difficulty in modifying a system,
especially a large one, is that a seemingly minor change to one part of the system
can have unforeseen and subtle consequences in another part.. As a result, the
incremental cost of modifications is often unacceptably high.

In this paper, we formalize the basic question of whether a change to one system
object can affect another system object, and we present a logical technique for

*Supported by the Naval Ocean Systems Center under Office of Naval Research contract NO0014-
86—C—-0775 and by the Office of Naval Research under contract N0O0014-83—-C-0300. Author’s current
address: Computer Science Laboratory (BN176), SRI International, 333 Ravenswood Avenue, Menlo
Park, CA 94025.

tResearch performed while visiting SRI under Office of Naval Research contract N00014-86—C—
0775. Author’s current address: Computer Science Department, University of Washington, Seattle,
WA 98195,




answering a class of questions that can be reduced to instances of this basic question.
Our approach has the following important properties:

e Potential changes are analyzed with respect to any level in system’s design,
whether the level contains abstract or concrete objects and connections. Early
feedback on the effects of changes is provided whenever design decisions are
formalized in a certain formal language.

e The semantic effects of a change are inferred from structural properties of
a system. Our approach does not depend upon the presence of behavioral
specifications, which can be difficult to construct. However, it does depend
on the presence of structural information, which can be recorded explicitly by
a programmer or extracted mechanically from the system implementation.

e A good approximation of the objects affected by a change can be found in a
finite number of proof steps. In practice, this means that proofs can be fully
mechanized, which will make it much easier to integrate our formal approach
into everyday software development.

We are aware of no other approach to the analysis of changes that is general,
rigorous, and fully mechanizable.

In this paper, a design is a logical description of how a system is put together,
i.e., its interesting objects and the relevant structural relationships among them.
This view of design focuses on the transition from a (formal) specification of what
a system is intended to do to an implementation that describes how to perform
the specified computation. This what-to-how transformation should be recorded
explicitly because an implementation, especially an efficient one, will invariably be
highly interconnected and somewhat unstructured. Designs will tend to be more
modular and easier to understand, since performance is not as much of a concern.

Each level in a design can contain user-defined relations that denote abstractions
of concrete objects and connections. Typically, an abstraction can be realized in
multiple ways. For instance, “operation” is an abstract object that might be realized
by a concrete procedure or function. The abstract relation “connected to” might be
realized be various combinations of concrete procedure calls and data accesses and
modifications. The lowest level in a design hierarchy directly models the structure
of the implementation; this level can be derived from the implementation using
classical flow analysis techniques. A design can be shown to be logically consistent
with an implementation using the technique in [12].

It is undecidable in general to determine the exact behavioral effects of a change,
but it is possible to obtain a precise, conservative approximation by formalizing the
problem in terms of structural concepts. In particular, we say that a change to




an object = affects an object y if the pair (z,y) is in the transitive closure of the
“information flow” relation. Unfortunately, information flow is not transitive in the
usual sense. That is, if there is flow from some object z to an object y and from y to
an object z, there is not necessarily flow from z to 2. As a consequence, the usual
notion of transitivity gives a crude approximation of the effects of a change. To
obtain a more accurate approximation of the true transitive flows (i.e., those that
would occur when the system is executed), we decompose the concept of information
flow into three special flows and provide axioms for composing the three flows to
determine the transitive closure of the information flow relation.

Since the effects of changes are analyzed in terms of information flows, the flows
that are implicit in a structural specification must be enumerated. For example, if a
concept in a specification is defined in terms of the primitive mod(P,z), which says
that variable z is modified by execution of procedure P, we know that there must be
some variable v whose value is assigned to z. Hence, there is an implicit flow from
v to z. Axioms are defined for deriving implicit flows from specifications written in
our language. To substantially reduce the size of a specification, system interactions
that are not intended to occur need not be specified (implicitly or explicitly). These
interactions are dealt with by means of the closed-world assumption [13].

All axioms, specifications, and questions about changes are represented in a
first-order logic restricted to finite models. Consequently, the proofs required to
answer questions contain no infinite search paths. This is a direct consequence of
the decision to take a structural approximation of a semantic property. The same
decision has led to convergent algorithms for program flow analysis in the field of
program optimization [1].

The remainder of this paper is organized as follows. The next section illustrates
the problem that is the focus of the paper and defines it more precisely; the following
section describes related work. Our solution is formalized in Sections 4-7, which
present, respectively, our system model, the axioms for inferring the flows implicit
in structural descriptions, our axiomatization of the transitivity of information flow,
and the logical framework for stating and answering questions about the effects of
changes. Section 8 summarizes our results.

2 Statement of the Problem

To illustrate the problem we address, consider the low-level design presented in
Figure 1a. The design consists of several objects: procedures AddInc, Add, and
Inc; variables sum, 1, a, b, and z; and the constant 1. Parameters are transmitted
using a value-result semantics. The purpose of procedure AddInc, which is not
specified in the figure, is to add the initial values of + and sum and return the result




PROCEDURE Addinc(sum,i)
ASSERT call(Add,(sum,i)) AND call(Inc,(i))

END; Addlnc
\
PROCEDURE Add(a,b) \
ASSERT affects(a,a) AND affects(b,a) \
END; \
-+ b -1 2z Add — — inc
PROCEDURE Inc(z) Ca

ASSERT call(Add,(z,1))
END;

(@) (b) (€)

Figure 1: A low-level design: (a) textual representation, (b) diagram of implicit
information flows, and (c) graph of call relationships.

in sum; it also increments the initial value of 1+ and returns the result’in 1.

We are interested, for instance, in whether or not a change to the value of
variable sum can affect the value of variable 2. At first glance, there appears to
be a relatively simple way to formalize this question in terms of the concept of
“information flow.” Informally, we say that there is information flow from variable
z to variable y, denoted z = y, if some change in the value of z affects the value
of y when the program is executed.! For example, execution of the assignment
statement “b: = a” causes flow from a to b. Since two objects can interact indirectly
through any number of intermediaries, the question is not whether sum = z, but
instead it is whether the pair (sum, z) is in the transitive closure of = on the set
of all variables, written sum => 2.2

We cannot form the transitive closure of = until the information flow relation-
ships implicit in the assert statements are made explicit. The assertion for AddInc
says that it makes two calls, one to Add and one to Inc. (The ordering of the calls
is unspecified for the moment.) The assertion for Add says that the initial values
of a and b affect some future value of a. The assertion of Inc specifies that it calls

1Classical information theory, developed by Shannon [15] and others, is concerned with the
amount of information generated by a particular event. We are interested in the simpler qualitative
question of whether any information is generated by an event. In other words, we are interested in
whether a change affects an object at all, not in how much it affects it.

2Let S be a set and R a relation on S. Relation R is transitive if “aRb and bRc” implies “aRc”
for a, b, and c in S. Elements a, b, and c need not be distinct. The transitive closure of a relation
R on a set S will be denoted R*. We say that aR*b if there exists a sequence s3;,32,...,3, of zero
or more elements in S such that aRs;,s;Rss,...,8,-1Rs,,, sn Rb.




Add.

Figure 1b depicts the information flow relationships implicit in this structural
description. Flows not in the figure are assumed to be invalid, due to the closed-
world assumption discussed later. For example, it is assumed that there is no flow
in Add from a to b, making b a read-only variable of Add. Procedure calls normally
cause bidirectional flow between actual and formal parameters. However, the two
calls to Add cause only nnidirectional flow from actual parameters 1 and 1 to formal
parameter b, since the value of b is unchanged by Add.

Returning to our original question about the possibility of flow from sum to z,
we can use the diagram Figure 1b to trace the information flow path

sum =>a =>z (1)

from which we can infer that sum == 2. This kind of reasoning can be formalized
in terms of the usual transitivity axiom.

Unfortunately, this simple analysis is much too conservative. A change to the
value of sum cannot affect z if there is no execution sequence for which sum = z.
We can establish that there is no such sequence in our example specification by
relating the information flow relationships in the specification to its calling rela-
tionships, which are illustrated in Figure 1c. Consider the call from AddInc to Add.
Procedure Add contains no procedure calls and it does not allow the value of formal
a to affect the value of its other formal 4. Therefore, the call from AddInc to Add
can only affect the value of sum by means of the path

sum = @ = sum

Procedure AddInec also calls Inc with actual parameter s. But since 1 is never affected
by sum (by the closed-world assumption), the call from AddInc to Inc cannot result
in a flow from sum to z, from which we can conclude that the call from Inc to Add
cannot either. This completes an informal argument that —(sum = z).

The main purpose of this paper is to formalize this kind of reasoning. To do
S0, a new axiomatization of the transitivity of information flow is required in which
a transitive flow is inferred from two individual flows only when there is a causal
relationship between the individual flows. That is, we must establish that some
change in the value of variable z in the flow £ => y causes a change in the value
of variable z in the flow y = z before we can infer the transitive flow z — 2.
Let T denote a logical axiomatization of transitive information flow that takes into
account the causal relationships among individual flows. In addition, let S denote
a structural specification, and let I denote axioms for inferring the flows implicit
in specifications. To reason about changes, we must define T and I so that the
transitive closure of =, namely,

{{z,y)| TUIUS F =y},
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contains the true information flows in §. Moreover, the derivation of the closure
should terminate for any specification §S. The transitive closure with respect to a
given specification S serves as the basis for answering a class of questions about
changes to §.

3 Related Work

In practice, the effects of changes are usually determined informally. For example, a
programmer might try to find the effects of a change by studying various relations
extracted from the program itself, such as direct (cross-reference) relations and
transitive relations about calling relationships and data flows. Numerous tools have
been developed which derive such relations, but they are used primarily for other
purpo:es, such as program optimization (3|, the detection of simple errors [4], and
documentation [10]. We are not aware of any existing tool that provides a systematic
way of combining the relations to determine the effects of changes.

Moriconi [11] proposed a formal approach to the analysis of changes that requires
the proof of formulas in an undecidable theory. From a behavioral specification of
a system and a Hoare-style logic, his method determines what formulas must be
proved to isolate the ezact semantic effects of incremental changes. The drawback
of this approach is that the effects of most changes cannot be found without sub-
stantial human assistance in proofs. The approach presented in this paper sacrifices
exactness but has the important advantage of logical simplicity.

Recent work by Horwitz, Prins, and Reps [7] on interprocedural program slicing
addresses the related problem of finding all program objects that might affect a
distinguished object. They improve on the interprocedural slicing algorithm of
Weiser [18] by defining a structural approximation of a slice in terms of operations
on an extended program dependence graph. The problem of computing slices is an
instance of the more general problem addressed in this paper. That is, our logical
framework can be used to compute slices involving various kinds of concrete and
abstract objects. For example, the variables r that can affect a specific variable v
is

{{z,v)) TUIUS F z=> v},

a subset of the closure discussed earlier. If we are interested in program slices, §
consists of those instances of our primitive that are true of the program. A slice
computed using our logical system appears to be as precise as one computed using
the improved algorithm of Horwitz, et al.

Somewhat related is work on configuration management (e.g., (5,17]) that uses
generic dependency relations between compilation units to determine what units
must be recompiled following a change. The dependency relations are not powerful
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enough for system design and a semantic property is not maintained. The goal is
simply to ensure that a system is properly compiled.

4 System Model

Our primitives have been designed for describing a system that consists of a collec-
tion of procedures which communicate by parameters that are passed by value-result
(copy-in/copy-out). A value-result semantics precludes the possibility of aliasing.
We treat only scalar types and assume that objects (procedures, variables, and
constants) have unique names. Modelling additional features, such as structured
types, aliasing, shared global variables,® and modules, will require some adaptation;
however, we believe that our basic approach is applicable.

The formal system model presented in this section should be distinguished from
a language for writing structural specifications. The system model can be seen as a
common internal representation for a class of specification languages. To illustrate
the difference, consider the call relation in the specification of Figure 1a. It takes as
arguments the called procedure and the set of actual parameters, whereas the cor-
responding relation in the system model is more verbose, taking as arguments the
calling procedure, the called procedure, the actual parameters, the formal parame-
ters, and the actual-formal pairings. In this paper, we do not propose a structural
specification language; instead, we concentrate on the underlying system model.
Henceforth, a structural specification is taken to be a logical expression in the sys-
tem model unless stated otherwise. The signature of each primitive in the model is
contained in Figure 2.

4.1 Primitive Objects

The basic objects in a design are variables and procedures, which are of type var
and proc, respectively. A special kind of variable, called a version variable, is used
to represent a value of an ordinary variable. Every time the value of an ordinary
variable is changed, a new version variable is introduced. A version variable has
type vvar. The standard mathematical concepts of boolean, finite sets, and finite
sequences are also predefined types.

The version variables that can be used to specify the values of a variable must
be explicitly associated with that variable. To this end, a finite sequence of distinct
version variables is associated with each ordinary variable. The elements of such a
sequence represent the successive values of the associated variable. A sequence for

3In our present model, global variables can be represented as additional parameters to each
procedure. However, an explicit representation of globals is preferable.




Primitive Types
var
vvar
proc
Context
context: name — type X formals X locals X versions
Primitive Predicates (context argument left implicit)
=>: proc X vvar X vvar — bool
==p,: proc X vvar X vvar — bool
==>,;: proc X vvar X vvar — bool
callByVR: proc X proc X (vvar x var)® — bool, n >0
mod: proc X var — bool
acc: proc X var — bool

Figure 2: System Model.

a variable z n'ust contain one element for each rcievant change to z. A specifica-
tion need not distiguish among the different values of a variable. In this event, a
single version variable is used to model all values. Failure to distinguish among the
different values will result in a more conservative approximation of the effects of a
change.

We use the sequence operations first and last to return the first and last element,
respectively, of a finite sequence. We also use functions that, when supplied with an
element of a sequence, return the preceding and the next elements in the sequence.
For an element e of a finite sequence s, the functions

next: vvar — vvar

and
prev: vvar — vvar

are defined by
prev(next(e,s),s) = e
prev(first(s)) = first(s)
next(last(s)) = last(s)

Example 1 The need for version variables can be illustrated by returning to the
design in Figure 1 and asking whether or not z == sum. Intuitively, a change in
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the value of z should not affect sum because ¢+ must be incremented after it is added
to sum. This means that procedure AddInc should call Add before Inc. Version
variables can be used to specify this ordering.
If order is left unspecified (as in Figure 1a) and AddInc calls Add before Inc,
the call to Add gives
sum —=> @ => sum
1t = b—=—=a = sum

and the call to Inc gives

i=>z=a—>2=—>1
l=b—a—2=—>1

from which we conclude that ~(z == sum).* Reversing the order of calls gives
i=>z=>a=>2z=>1t=—= b= a=sum (2)

which implies that z => sum.

Figure 3 shows how version variables can be used to achieve the desired ordering
of calls. The key is in the assertion for AddInc, where the same input value 1;, is
transmitted to both Add and Inc. The value 7,,; returned by Inc is different from
1;n and therefore 1, can never be transmitted to Add. This is illustrated by the
information flow diagram in Figure 3b in which path (2) cannot occur. We can
trace a path from z to t,u, namely,

is’n = Zin = Qin = Gout = Zout — iout

but there is no path from 1, to 1;, and, hence, no path to sum. O

4.2 Contexts

An object has a name, a type, and possibly certain other properties. For instance, a
procedure object has a name, the type proc, and a set of formal parameters. Objects
are modelled by a function called a contezt, which would be derived from declara-
tions written in a structural specification language or a programming language.
Contexts are used in the evaluation of logical expressions.

Formally, a contezt for a specification § is a function

context: names — types x formals x locals X versions

where

4The path 1 = 2z =—> a = sum is not a possibility because there is no causal relationship
between 1 => z = a and a => sum. This would be detected by the transitivity axioms of
Section 6.




PROCEDURE AddInc(sum.,i)
ASSERT call(Add,(sum_in.i_in)) AND

sum in sum out iin i
call(lnc (i_in))
END:;
PROCEDURE Add(a,b)
ASSERT affects(a_in,a_out) AND
affects(b_in,a_out)
END;
a w32 --+-—bOH -—-ouououo o1 z
in in

out
out in i in  Zout

PROCEDURE Inc(z)
ASSERT call(Add,(z_in,1)} AN \\ //’

END;

(a) (b)

Figure 3: Using version variables to order calls from AddInc to Add and Inc.

e names is a finite set containing the object names in §,

types is a finite set containing the primitive and constructed types in S,

formals is the finite powerset of the set of variables in S, used for recording
the parameter lists of procedures,

locals is the finite powerset of the set of variables in S, used for recording the
local variables of procedures, and

e versions is a finite set whose elements are the version-variable sequences in S.

A context is fixed for a given specification. In this paper, the context associated
with a specification § is treated as an smplicit argument of every predicate in §,
including the primitive predicates. For instance, let C be the context for the spec-
ification under consideration and let the function allprocs, when supplied with a
context, return the set of all procedure names in it. Then, the expression (Vz: proc)
is written as a shorthand for (Vz € allprocs(C)).

The following operations on contexts are used later in the paper. The predicate
verstonOf is a mapping vvar X var — bool that checks whether a version variable
is a version of an ordinary variable. The predicate formalOf (localOf) is a mapping
var x proc — bool that checks whether a variable is a formal (local) of a procedure.
It is often convenient to ask whether a given variable or version variable is a variable
of a procedure. The predicate

varOf: (var + vvar) X proc — bool
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is defined by

varOf(z, P) = localOf(z,P) v formalOf(z, P)
varOf(z, P) = (3z:var)[versionOf(%,z) A varOf(z, P)]

where the hat denotes a version variable. The only retrieval operation we will use is
the function versions, which returns the version-variable sequence associated with
a given variable.

Example 2 The declarations in the specification of Figure 3 define a context that
can be represented in tabular form:

name type formals locals versions
AddInc proc ) {sum,1} 0
sum var 0 0 (sUMin, SUM,ye)
sum;, vvar 0 ] ]
SUMyy Vvar ] ] ]
1 var ] 0 {(Tiny tout)
tin vvar ) 0 0
Tout vvar ) 0 0
Add  proc {a,b} 0 0
a var ) ] <aim aout)
Qin vvar 0 1] 0
Qous vvar Y] 0 ¢
b var 0 ) (bin)
bin vvar 0 0 0
Inc  proc {z} {1} 0
z var 0 0/ (Ziny Zout)
Zin vvar ) ] 0
Zout vvar ] 0 0
1 var 0 1) (Lin)
Lin vvar 1] ) 0

Notice that every object has a name and a type. The other properties of an object
depend on its type and the specification itself. A constant, such as the number 1,
is modelled as a variable having exactly one version variable. O

4.3 Directed Information Flow

In our system model, information flows are associated with procedures. Informally,
we say that information flows from a variable z to a variable y under procedure P
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provided a change in the value of z can be conveyed to y when P is executed. For
example, the binding of an actual parameter a to a formal parameter z causes a
flow from a to z.

This concept can be formalized as follows. Let store:id — out model a computer
memory as a mapping of identifiers to their values, and let eval: proc x store —
store be the valuation function for procedures. The infix operation . is a function
store X 1d — out that looks up the value of an identifier in a store. The equality
predicate s; = s, determines whether or not two stores s; and s, have the same
values for all identifiers except possibly for z. Information is transmitted from a to
b by procedure P if and only if variety in a affects the value of b when P is executed.
Formally,

a2p ¥ (3s1,52) 81 = sz A eval(P,s;).b # eval(P,sz).b

where s;, sz in store. This formulation of information transmission is a slight mod-
ification of the formulation originally developed by Cohen (2] for stating problems
in computer security.

For our purposes, it is not enough to know that there is flow between two vari-
ables. In addition, we must know the “directionality” of the flow. Specifically, we
define = to be the logical disjunction of three directed-flow relations: ==>;, =,
and =, standing for forward, backward, and lateral information flow, respectively.
Forward and backward flows model the interprocedural variable bindings that result
from a direct or transitive procedure call. Lateral flow is intraprocedural, involving
local variables of the same procedure. Henceforth, z = y is taken to mean that
(z,y) is in any one of the three directed-flow relations. Formally, the relation

=>: proc X vvar X vvar — bool

is defined by
def

:1:——}:>y = z=P>¢y V :z:=P>fy V :z:=P>by

Notice that for a == b to be true, neither a nor b can be a constant. For
example, 3 =25 b cannot be true since 3 contains no variety. Recall, however,
that we decided to model a constant as a variable. More specifically, we model a
constant as a read-only variable, i.e., a variable whose value cannot be changed by
the program. In this model of constants, a question about the effects of an edit
that would replace one constant with another is meaningful and can be answered
without any additional machinery. A read-only variable must satisfy the derived
ReadOnly predicate, which disallows flow to the variable, but allows flow to emanate
from it.
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Figure 4: Directed information flows for the AddInc example in Figure 3a.

Example 3 The directionality of the flows seen earlier in Figure 3b is made explicit
in Figure 4. For example, there is a forward flow from sums;, to a;, because the call
from AddInc to Add causes the initial value of actual parameter sum to be bound to
formal parameter a of Add. There is a backward flow from a,,: to sum,,: because

the value of a is assigned to the output version of sum upon return of control from
Add to Inc. O

4.4 Additional Primitive Connections

The n-ary callBy VR relation is used to model procedure calls. Its first argument is
a procedure P that directly calls a procedure @ with an arbitrary number of actual-
formal parameter pairs. Each call has a value-result semantics and call chains can
be circular. Sometimes we are not interested in the arguments of a call, in which
case we use the function

dcall: proc x proc — bool
which is defined by
dcall(P, Q) = (3p: plist)callByVR(P, Q, p)

where plist is a set of pairs of type vvar x var, which is the possible actual-formal
pairings in a given context.

The mod and acc predicates are familiar in the field of program optimization [1];
they are also useful in building structural specifications. The relation mod(P, z) says
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that a variable z of procedure P (i.e., z € varOf (P)) can be modified by execution of
P, either directly or transitively through a called procedure.® The relation acc(P, z)
says that a variable z can be accessed by execution of procedure P. The mod and
acc relations are not independent of the other primitive concepts; we will show how
they can be defined in terms of flow relations.

4.5 Derived Abstractions

Ordinarily, a system design would not be specified directly in terms of the primi-
tives. It instead would be expressed in terms of abstractions appropriate to each
level of detail. Most abstract objects are represented naturally as primitive proce-
dures or variables which are subsequently “implemented” in terms of one or more
similar objects. On the other hand, most abstract dependencies are best represented
as derived concepts defined in terms of more primitive dependencies. Abstract de-
pendencies are used to partition a system into manageable parts that interact in
well-defined and predictable ways. Several useful derived dependencies are defined
below.®

Example 4 Protecting a variable. It is often useful to restrict access to a variable
or to restrict the ways in which a variable can be used. For instance, we may want
to allow procedures to read a certain variable but prohibit them from writing it.
This is captured by the predicate

ReadOnly: var — bool

which is defined by

ReadOnly(z) ¥ - (3p:proc)mod(p, z)

for z in var. If a variable is required to satisfy this predicate, we can specify
accesses of the variable, but any specified modification to it will be inconsistent
with the above definition. O

Example 5 Restricting variable interactions. A set of variables can be partitioned
into independent subsets using a predicate which says that a variable z is completely

SFor optimization purposes, mod and acc usually contain only variables visible at the interface
to a procedure. However, we must also include local variables not visible at the interface.

6Design dependencies can be stated informally using various program design languages, several
of which are described in a book by Martin and McClure [9]. These languages provide a few useful
primitive concepts, but they do not support definitional extensions and their meaning is imprecise
and possibly ambiguous.
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independent of a variable y if and only if a change in the value of y has no effect on
the value of z. This predicate

IndependentOf: var x var — bool

is defined, for z and y in var, by

IndependentOf(z, y) e

(VZ, §: vvar)(VR: proc)|versionOf(Z, z) A versionOf(§,y) O —(¥ £, z)|

If a variable = is independent of a variable y, we know that y cannot use z as an
intermediary to affect some other variable or procedure. O

Example 6 Interprocedural channel. Suppose that we want two procedures to
communicate through a specific variable. We say that a variable z is a channel
from procedure P to procedure Q iff information flows from P to Q through =z.
This is captured by

ChannelTo: proc X proc x var — bool

which is defined by

ChannelTo(P, Q, z) def
(3%, 9, 2: vvar)(3R: proc) versionOf (%, z) A varOf(§, P) A varOf (2,Q) A
(GBrinzB ) v 202B,5) v 202, 2))
for P and Q in proc and z in var. Since z is an interprocedural channel, we need not
consider lateral flows whose purpose is to link interprocedural flows. We also rule

out the possibility of a forward-backward flow, since this would make z a channel
from P to itself. O

Example 7 Interprocedural partitioning. Assume that a procedure A is not in-
tended to be connected to a jrocedure B, which we express by

—~ConnectedTo(A4, B)

The ConnectedTo relation says that, for any procedures P and Q, there is a tran-
sitive call from P to @, or a transitive information flow from a variable referenced
by P to one referenced by @, or both. The predicate

Calls: proc x proc — bool
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is defined recursively by

Calls(P,Q) ¥
(3p: plist){callByVR(P, Q,p) V
(3R: proz<)[callByVR(P, R, p) A Calls(R, Q)]]

where, as before, plist is a set of possible actual-formal pairings. The predicate
ConnectedTo: proc x proc — bool

is defined by

ConnectedTo(P,Q) &
Calls(P,Q) Vv (3%, #: vvar)(3R: proc)[varOf(z, P) A varOf(§, Q) A = §]

Notice that information may flow from P to @ as the result of a transitive call from
P to @ (in which case R is P), or R can be a parent of P and Q that transmits a
return flow from P to Q. O

5 Inferring Directed Flows

We must identify any implicit flows in a specification before we can apply our
transitivity axioms. The axioms presented in this section can be used to deduce the
flows left implicit in any specification constructed using the primitives.

The first two axioms in Figure 5 allow us to infer directed flows from calls. The
VP axiom handles the situation in which the value of an actual parameter is actually
used by the called procedure. In this event, there is a forward flow from the actual
parameter to the corresponding formal parameter. In the antecedent of the axiom,
af is an actual-formal pair and afpairs (of type plist) is a set of such pairs. The
member operation tests whether af is in afpairs. In the consequent, the value of the
expression first(af) is a version variable transmitted as an actual parameter; the
value of first(versions(last(af))) is the input version variable for the corresponding
formal parameter.

The RP axiom says that a backward flow from a formal to its corresponding
actual occurs only when the value of the formal is modified during execution. If
it is not, there is no need to return its value and, hence, no backward flow is
necessary. The consequent of this axiom specifies a backward flow from the output
version variable associated with the formal parameter in the pair af to the next
version of the variable transmitted as an actual parameter.

Normally, there is a bidirectionial low between actuals and formals. The use of
two separate axioms, however, will improve our estimate of the effects of a change
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Value Parameter (VP)

callByVR(P, Q, afpairs) A member(af, afpairs) A acc(@, last(af))
> first(af) ==, first (versions(last(af)))

Result Parameter (RP)

callByVR(P, Q, afpairs) A member(af, afpairs) A mod(Q, last(af))
> last(versions(last(af)) ==, next(first(af))

Mod and Information Flow (MI)
mod(P,z) =
(3%: vvar)|versionOf (%, z) A
(39: vvar)[(varOf (§, P) A § ==, 2) V
(3Q: proc)[dcall( P, Q) A varOf(§,Q) A § =, 2]]]
Acc and Information Flow (AI)
acc(P,z) =
(3%: vvar)[versionOf(Z, z) A
(39: vvar)[(varOf (§, P) A £ ==, §) V
(3Q: proc){deall(P, Q) A varOf(§, Q) A & = 9]

Figure 5: Finding implicit flows. The type of each free variable can be inferred from
the signatures in Figure 2.
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whenever the flow happens to be unidirectional. If a formal parameter is not mod-
ified by the called procedure, there is no return flow. If a formal parameter is used
only to return values, there is no forward flow. If a formal parameter is not used at
all, no flow occurs and none can be inferred using the axioms.

The axioms defining mod and acc are intuitively simple but syntactically com-
plex. Axiom MI says that a variable z is modified by P if and only if a version of
is modified within P or as a result of a return flow from a called procedure. Axiom
Al says that z is accessed by P if and only if a version of z is accessed within P or
is transmitted by P as an actual parameter. Variable modification and access are

determined by directed flows: if a £, b, then a is accessed and b is modified.

6 Transitivity Using Directed Flows

To accurately track the flow of information, we introduce twelve logical axioms
in Figure 6 that define transitivity for the information flow relation. The axiom
schema at the top of the figure says directional flows are transitive in the usual
sense.

The next four axioms combine directional flows with lateral flows. Lateral flows
among variables of a procedure are “directionless” in that they are used to link
interprocedural flows and to allow interprocedural flow propagation to proceed in
either direction. For instance, Axiom FL says that if a forward flow is followed by a
lateral flow, the overall direction of flow is forward. The direction will stay forward
unless it is changed by a backward flow. Similarly, axiom LF says that a lateral flow
followed by a forward flow results in a forward flow. In both instances, the lateral
flow serves as an intermediate flow connecting to a propagated forward flow.

The BF and FB axioms combine forward and backward flows. Axiom BF says
that if there is a backward flow from a variable z in a called procedure to a variable
y in its caller, and the caller then transmits y forward to variable z through another
call, the resultant direction of flow from z to z is forward.

Axiom FB is somewhat complicated because it must trace a flow emanating
from a call site to the called procedure and back to the same call site. This is
accomplished by the third conjunct in the antecedent. This conjunct contains two
disjuncts, which handle the two situations illustrated in Figure 7. In both instances,
procedure P calls procedure @ and variable y belongs to Q. The first disjunct
(Figure 7a) says that when the value of actual z is transmitted to formal a, Q@ may
modify the value of @ and then transmit this new value back to z. If this occurs,
the next version of z, nezt(z), is assigned the value. The input value of a;, can be
transmitted directly or indirectly to a,q:.

The second disjunct (Figure 7b) handles the case in which the value of z affects
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Lateral-Lateral (LL), Forward-Forward (FF), Backward-Backward (BB)

P e oo
:c=P>5y/\y=P>5zD T =z, if §isi, f,or b.

Forward-Lateral (FL)
xéfy A y——P}zz 2 x=P>fz

Lateral-Forward (LF)
:z:=P>1y A y——£>fz D a:——g>fz

Backward-Lateral (BL)
z=P>by A y——amz ) :z:——{>bz

Lateral-Backward (LB)
z=P>1y A y=—£>bz ) :c——£>,,z

Backward-Forward (BF)
.7:=P>;,y A y———li>fz D z=P>fz

Forward-Backward (FB)

£,y A y=>, 2z A (3Q:proc)(Ja, b: var)| varOf (y, Q) A
[next(z) = 2z A callByVR(P, Q, (z,a)) A first(versionsOf(a)) Ly
A (y =<, last(versionsOf(a)) Vv y = last(versionsOf(a)))] V
[sameCall(P, Q, {(z,a), (prev(z),b)}) A first(versionsOf(a)) Ly
A (y =, last(versionsOf (b)) V y = last(versionsOf(b)))]]

oz =P>; z
Upward flattening (UF)

deall(P,Q) A z =, y D 1y, if §is f,b,or L.

Figure 6: Transitivity of =>. Free variables of type vvar (version-variable) are
indicated by a small letter, of type proc Y).bstract procedure) by a capital letter.
9




out

Figure 7: Illustration of the two situations handled by axiom FB.

the value returned to another actual parameter. The derived predicate sameCall is
true if two actual-formal parameter pairs are associated with the same call site. In

axiom FB,
sameCall(P, Q, {(z, a), (prev(2),b)})

is true if actual z of P is associated with formal a of @ and the previous version of
z (the one before the call) is associated with actual b. That is,

sameCall: proc x proc x plist — bool
is defined by

sameCall( P, Q, p1) = (3p2: plist)[callByVR(P, Q, p2) A
(Vp: ppair) (member(p, p1) O member(p, p;))]

where ppair is of type vvar X var, an actual-formal pair.

If the premise of axiom FB is satisfied, there is a lateral flow from actual z to
actual z. This has the effect of masking the procedure call, and it permits z to be
propagated in a lateral, forward, or backward flow initiated by P.7

The UF axiom schema, in conjunction with the FB axiom, specifies when in-
terprocedural flows can legitimately be combined. The UF schema allows flows to
be combined only if they occur on control paths emanating from a common pro-
cedure. More precisely, the schema says that a flow resulting from the execution
of procedure Q also results from the execution of procedure P provided P directly
calls Q.

7 Axiom FB can be stated more elegantly; the formulation presented in this section was chosen
to mirror the structure of the other axioms as closely as possible.
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Example 8 Returning to Figure 3a, suppose that we want to ask “Does the value
of 1 affect the value of sum?” To answer this question, we must collect the declared
objects into a context, which was done earlier in Example 2, and translate the
specified connections into predicates in our logic. The translation gives

P1. callByVR(AddInc, Add, (sum;p,a), (tin, b))

P2. callByVR(AddInc, Inc, (i;n, 2))

Ad
P3. Qin 1 Qout

P4. bin ggl Qout

P5. callByVR(Inc, Add, (2in,a),{1in, b))
where the call and affects relations in the figure have been translated into the
callByV R and =, relations, respectively. We now use the axioms in Figure 5 to
deduce the following implicit flows; together with P3 and P4, they correspond to

the ten arrows in Figure 4.
ne

P6. sum;, Addly f Gin
P7. aow Ag'cb SUMyt
PS. i X b,
Poa. i,',-. Aglgc f %in

P10. Zouw "2 iput

I
P11. Zin éf Qip
P12. Qout Igb Zout

P13. Lin 25, bin
Given assumptions P1-P13, the answer to our question is provided by the following
formal proof.

1. dcall(AddInc, Add) premise P1, defn. of dcall
2. bin "B out UF(1, P4)
. AddInc
3. tin — f Gout FL(PS,Z)
4. sameCall(AddInc, Add, premise P1, defn. of sameCall
{<iins b)’ <su’min7 a’)})
. AddIne
5. tin => | SUM,ut FB(3,P7,4)

The application of the FB axiom in the last step is for the situation depicted in
Figure 7b. O

Example 9 A slightly more difficult question is “Does the input value of 1 affect its
output value?” The following proof illustrates how the lateral flow in the consequent
of the FB axiom provides a neutral platform for propagating directional flows. Both
applications of the FB axiom are for the situation in Figure 7a.
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1. dcall(Inc, Add) P5, defn. of deall

2. @i 25 agu: UF(1,P3)

3. zin 2%, apu FL(P11,2)

4. sameCall(Inc, Add, {(zin,a)}) P5, defn. of sameCall
5. Zin 225 Zous FB(3,P12,4)

6. dcall(AddInc,Inc) P2, defn. of dcall

7.  Zin Addln °l Zout UF(5,6)

8. tin Ag_g;cf Zout FL(P9,T7)

9. sameCall(AddInc, Inc, {{iin,2)}) P2, defn. of sameCall
10, 4ip A2 G FB(8,P10,9)

a

7 Questions, Answers, and the Logic

The special flow axioms, structural specifications, and questions about changes are
all represented in a single logic. Let DDB denote a “design data base” consisting
of finitely many formulas that include a structural specification §, the transitivity
axioms T, and the rules I for inferring implicit flows, all expressed in or translated
into the language £L(DDB). L(DDB) is a typed (many-sorted) first-order logic
with equality having the following properties:

1. There are a finite number of constant signs. The constants are pairwise dis-
tinct, and each one denotes a different design object, such as AddInc or sum.

2. The predicate signs are ==, , ==, =, mod, acc, and callByVR.
3. The type symbols are var, vvar, proc, bool, seq, and set.

4. The well-formed formulas are definite Horn clauses of the form
HiA---ANH, DC, n>0
where the H; and C are atoms containing no function symbols.®

Definitions introduce new, eliminable symbols and we regard them as additional
axioms. A query @ consists of

1. A declaration of the form z;:¢;,...,Z,:t,, and

8The functions used in this paper are total and we know the values for any of their arguments.
There are no Skolem functions because wffs are quantifier free.
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2. An expression of the form

(Q1y13 Tl) DR (qmym: Tm) W(zl’ ooy Ty Y1y-- -y ym)

where (g;yi: T;) is (Vyi: T;) or (3y;:T;), the t’s and T’s are types in L(DDB) ,
and W(zy,...,Zn, Y1,---,Ym) is @ quantifier-free formula in £{DDB) having
free variables z;,...,z, and bound variables y,..., Ym.

Before defining what it means for an n-tuple of constants to be an answer to a
query, we should point out that it is not possible to deduce negative information
with the inference system defined above. For instance, in our earlier analysis of the
specification in Figure 3a, we concluded informally that ~(sum == z}. Intuitively,
this is the correct answer. However, it is not possible to infer =(sum = z) from a
DDB containing that specification.

Implicit in our informal reasoning was the assumption that all intended flows
were specified and that those that were not specified could not occur. This assump-
tion must be removed or it must be taken into account in the inference system.
The former approach requires that all relevant positive and negative facts about
the system be stated explicitly in the specification. In our domain, the number of
negative facts can far exceed the number of positive ones, making it impractical to
include the negative facts in a specification. The alternative approach is to specify
all positive facts explicitly and modify a traditional first-order inference system to
infer negative facts by default.® This can be formalized in terms of Reiter’s closed-
world assumption (CWA) [13], which says that given a data base DB and an atom
A, if DB/ A, then we can infer - A. Formally, the CWA closure of a DB is defined
by

closure(DB) = DB U {~P(c)| DB ¥/ P(¢)}
=\

where each P{¢) is a ground atomic formula. The CWA closure is known to be
consistent for definite Horn clauses 16}, and any positive or negative atomic query
can be evaluated with respect to it.

An answer to a query can new be defined as follows. An n-tuple of constants
€1,...,Cn IS an answer to a query Q with respect to DDB iff

1. 1 € tl,...,Cn € tn, and
2. closure(DDB) F (quy1:Th) -« - (@m¥m: Tm) W(C1s---3Cns¥1s+ - s Ym)

It is clearly dectdable whether or not an n-tuple of constants is an answer to a
query, since there are only finitely many constants and predicates in the intended

9Negative facts may be included in a structural specification for expository purposes, but they
can be removed from the DD B because they have no influence on CWA query evaluation.
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interpretation. However, if a design contains a large number of objects, it may
be impractical to evaluate a query using a brute-force approach. The major cause
of inefficiency is the recursive nature of the information-flow axioms. One way to
eliminate the possibility of infinite deductions is to represent certain information
flow relationships explicitly as ground atoms, rather than intentionally as general
facts [14]. But this can require an excessive amount of storage if ground atoms are
stored in the obvious way, e.g., as a set or array of atoms. An open problem is
the development of a time and space efficient decision procedure for computing the
transitive closure of = in accordance with our axioms.

The fcilowing examples illustrate how to represent questions about variables and
procedures in our logic.

Example 10 Variables. Suppose we are interested in those variables z that are

affected by a change to a given variable v of procedure P. Formally, we can express
this by

(2z, v: vvar) (3R: proc)

(versionOf(Z, z) A varOf (v, P) A versionOf (9, v) A § £ z]

The variable z is the only {ree variable; v and P are logical constants. The formula
says that a variable z is affected by a change to a variable v (of P) if a change to a
version of v can affect a version of z.

Our earlier question about whether sum affects z is an instance of this question.
If we substitute sum for v, AddInc for P, and z for z, we obtain

(3%, : vvar)(3R: proc)

iversionOf(Z, z) A varOf (sum, AddInc) A versionOf (9. sum) A § £, z)

which is a formal statement of the question. This formula is not entailed by the
closure of the DDB containing the specification in Figure 3. Therefore, by the
CWA, we can conclude that sum does not affect z. O

Example 11 Procedures. Questions about procedures can be reduced to questions
about variables. For instance, if we want to know each procedure @ affected by a
change to a given variable v of procedure P, we write

(3%, 0: vvar)(3 R: proc)

[varOf (%, Q) A varOf(v, P) A versionOf (9, v) A § == z)

This expression says that a procedure @ is affected by a change to v if it has a
variable that is affected by a change to v.
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Similarly, the question of which variables z can be affected by a change to given
procedure P is expressed by
(3%, 9: vvar)(3R: proc) [versionOf (%, z) A varOf (9, P) A § =2
and the question of which procedures @ affected by a change to a given procedure
P by

(3%, b: vvar)(3R: proc)[varOf (2, Q) A varOf (9, P) A & == %]
0

Example 12 Abstract slice. An abstract slice is those variables z that can affect
a given variable v of procedure P, which is the converse of the previous questions.
This concept can be expressed as

(3%, ¥: vvar) (3 R: proc)

[versionOf (%, z) A varOf (v, P) A versionOf(#,v) A £ => B

The usual notion of a slice is concerned with the individual statements where vari-
ables are affected. We have chosen procedures, not statements, as atomic objects to
facilitate the design and debugging of large-scale systems. Statement-level objects
are more suited to program merging, for example, which is an important application
of slicing [6]. O

The logical system and the question-answering technique defined in this section
have been implemented in a version of Prolog that employs the negation as failure
inference rule to infer negative information. A Prolog program is a set of definite
Horn clauses that are executed using a refinement of the resolution principle called
SLD resolution. A branch in an SLD proof tree is called a success branch if the
derivation of the goal succeeds and a faslure branch if it fails. A finitely failed
SLD tree is one which is finite and contains no success branches. The negation as
failure rule says that if an atom A has a finitely failed SLD tree for a gi.en DDB,
then infer —A from that DDB. Since the SLD finite failure set is a subset of the
complement of the success set, the negation as failure rule is less powerful that the
CWA. Nevertheless, it is used for inferring negative information because it is easily
and efficiently implemented. Details on SLD resolution, negation as failure, etc. can
be found in a book by Llovd [8].
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8 Conclusion

We have presented a general logical technique for isolating the semantic effects of
changes to a software system. The technique applies to structural designs con-
taining predicates built up from our primitives and to implementations having a
classical data flow semantics. The technique improves upon a straightforward in-
formation flow analysis by decomposing the usual information flow relation into
three finer-grain relations, called directed flow relations, and by defining transitiv-
ity of information flow axiomatically in terms of the three relations. The definition
of transitivity involves several mutually recursive axioms.

It is undecidable in general to determine the semantic effects of a change. Con-
sequently, we relaxed the requirement that the results of our analysis be exact
and insisted only that the results be reasonably close to exact and conservative.
By relaxing the exactness constraint, we were able to use structural proofs to ap-
proximate the true semantic effects of a change. This led to a decision procedure
for approximating the effects of changes, which we believe is an important step in
making a formal analysis of changes practical.

However, the direct implementation of our technique in Prolog proved inefficient
for systems containing a large number of objects. Further research is needed to
develop a fast algorithm for computing the transitive closure of the information
flow relation from our transitivity axioms.
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